Ma 146 ab
Introduction to Knot Theory and Quantum Topology
Introduction to Knot Theory and Quantum Topology
9 units (3-0-6)
|
first, second terms
Prerequisites: Ma 109 or equivalent.
Part a offers an introduction to knot theory: the problem of classification of knots, different knot types, basic (classical) invariants, and some elements of knot concordance. Part b moves from classical to quantum invariants: the Jones polynomial, colored Jones polynomial, and then more general quantum group invariants of knots and 3-manifolds. Part b also includes introduction to R-matrices, the Yang-Baxter equation, the Drinfeld-Kohno theorem and, if time permits, elements of categorification.
Instructor:
Gukov